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Abstract. A successful case of applying brute-force search to functional pro-
gramming automation is presented and compared with a conventional genetic
programming method. From the information of the type and the property that
should be satisfied, this algorithm is able to find automatically the shortest Haskell
program using the set of function components (or library) configured beforehand,
and there is no need to design the library every time one requests a new functional
program.
According to the presented experiments, programs consisted of several function
applications can be found within some seconds even if we always use the library
designed for general use. In addition, the proposed algorithm can efficiently tell
the number of possible functions of given size that are consistent with the given
type, and thus can be a tool to evaluate other methods like genetic programming
by providing the information of thebaseline performance.

1 Introduction

Strong typing is useful for sound programming because it provides constraints for iden-
tifying errors in programs at the compilation time. On the other hand, when using a
strongly typed functional language like Haskell[3] one can exploit strong typing to en-
able random programming, that is, when we forget what function to put to some place
in our program, we can just combine functions to obtain a type-consistent program that
matches, put it there, and then it is often the case the program works correctly. The main
topic of this paper is automation of this trial and error process.

Roughly speaking, the approach to construct a set of functions matching the re-
quested type used in this research is doing the following in the breadth-first manner.

1. construct a set of functions whose return type matches the requested type, and
2. for the type of each argument of each function in the set, if ever, do the same thing

recursively.

Without the type constraint, repeating that process until small number of depth causes
the number of programs explode. However, as we shall see in Section 5, with type con-
straints the number of matching functions consisted of several functions is sometimes
surprisingly small. Its analogy with the cases where doing search for future moves in
playing deterministic board games like chess is interesting: because the number of in-
teresting moves is limited by each situation, brute force search without highly heuristic
approach like genetic programming can work well.



Strangely enough, while variations of exhaustive search seem successful in playing
deterministic board games, in the recent literature I could not find attempts to apply
exhaustive search to synthesis of general functions. As for heuristic methods there are
some genetic programming approaches. The ADATE System[6] successfully invents
some algorithms by using monomorphic, first-order type system and improving synthe-
sized programs that are correct for some examples and incorrect for others. PolyGP[9]
uses polymorphic, higher-order type system like the proposed method, and is discussed
in Subsection 5.3 in more detail.

2 Foundations of Functional Programming

This section reviews some important ideas of the foundations of functional program-
ming (e.g. [2]) in short, for readers who are not accustomed with them.

2.1 Lambda Calculus

Lambda calculus is a term rewriting system that is Turing-complete. It is itself a very
simple functional language. In other words, functional languages are extensions of
lambda calculus with syntactic sugars.

In lambda calculus, each variable is a function and can be passed as an argument.
Function applications are expressed by just putting the function left-adjacent to its ar-
gument likex y, wherey is applied to functionx. They are left associative, i.e.,x y z
means(x y) z .

x y z can also be seen as applying two arguments to binary functionx. In fact,
the set of functions taking a pair ofA andB and returningC is isomorphic to the set
of functions takingA and returning a function takingB and returningC. This is how
lambda calculus usually deals withn-ary functions, when the theory of lambda calculus
itself only deals with unary functions.

Let E is a lambda expression (i.e. an expression in lambda calculus). Then the
function taking argument variablex and returningE is written asλ x . E . Obtaining a
function this way is calledlambda abstraction. Lambda abstraction is a kind of quan-
tification like∀ and∃. HereE may or may not includex. If x is not included inE, x is
calledabsentparameter ofλ x . E .

λ x1 x2 . . . xn . E whereE is an expression is a shorthand ofλ x1. λ x2. . . . λ xn . E .
This can be viewed as a function takingx1, x2, . . . , xn as arguments and returningE.

2.2 Combinators

A closed lambda expression, or lambda expression where all the variables appearing
is bounded by lambda abstraction is called acombinator. All the exported functions in
modules in functional languages are combinators.

Some primitive combinators have their names: e.g.S = λ f g x . f x (g x ) is called
distributer and represents term sharing;K = λ x y . x is called cancellator and repre-
sents skipping an argument, and sometimes used inK E form to represent a constant
function returningE; I = SKK = λ x . x represents an identity function.



The set of functions constructed with function applications ofS’s andK’s is Turing-
complete. In other words, any computable recursive function can be constructed only
with combinations of function applications. This is why we synthesize programs with
only function applications in inductive functional programming automation algorithms
including the proposed one and genetic programming.

2.3 Typed Lambda Calculus

So far I wrote about type-free lambda calculus and combinatory logic, but most modern
functional languages are typed, and are based on typed lambda calculus.

In typed lambda calculus each expression is assigned a type. For example, sinceK
takes an argument with a type, say,a and returns a function that takes an argument with
another typeb and returnsa, the type ofK is ∀ a b. a → (b → a). In this typea and
b here are generic type variables that correspond to template type variables in C++, and
x → y means the function type takingx as the argument and returnsy. Because→
is right-associative,∀ a b. a → (b → a) can also be written as∀ a b. a → b → a,
which intuitively reflects the fact that this function can be interpreted as a binary func-
tion taking typea and typeb as arguments and returnsa.

E :: t means that the type of expressionE is t. For example,K :: ∀ab. a → b → a.
Also, S :: ∀ a b c. (b → c → a) → (b → c) → b → a, andI :: ∀ a. a → a.

One important fact in assigning types to lambda expressions and combinators is that
some lambda expressions have infinite types which are usually prohibited in most typed
functional languages. Especially, fixed point combinators which are used to implement
recursions are defined with such prohibited subexpressions, and thus general recursions
cannot be implemented only withS andK combinators. A common solution to this lim-
itation is to regard a fixed point combinatorfix :: ∀ a. (a → a) → a as yet another
primitive combinator. This issue is discussed further in Subsection 4.2.

3 Implemented System

This section describes the specification and the implementation of the system, but as for
the implementation here I provide only a sketch. The full detail of the implementation
is written in [5].

3.1 Specification

The system reads a Haskell source file describing the available function set, which I call
the component library. This algorithm constructs the shortest program with the given
type satisfying the given property by combining functions in the component library.
If the type is not provided, it is inferred from the property by using the conventional
Hindley-Milner style type inference algorithm (e.g. [4]).

The current version of the algorithm can deal only with Hindley-Milner style type
system, although Haskell extends it with ad hoc polymorphism or type classes. Also, in
the experiments shown later I decided to prohibit functions in containers (such as list
of functions, tuple of a function and something, etc.), because it is quite rare that such



containers are required, and because by prohibiting them the efficiency improved in a
great deal. I did that by introducing two kinds of type variables: one that can match
functions and the other that cannot, and made the system identify each type variable.

3.2 System Structure

Figure 1 shows the structure of the implemented system.
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Fig. 1. System structure

The system runs in the following way:

– when the program is invoked, the library is read to the interpreter and the library
trie;

– the user-requested type and property are read; if the type is not provided, it is in-
ferred by a conventional algorithm;

– the program generator returns the infinite set of programs that matches the re-
quested type in the form of lazy infinite list (or stream) that is ordered by the
program size;

– each generated program is applied to the property function as the argument, and the
interpreter runs the resulting term, which is repeated until the return value is true
(or success).

3.3 Program Construction

As written in the Introduction, the approach to construct a set of functions matching the
requested type used in this research is essentially,

1. to construct a set of functions whose return type matches the requested type, and
2. to do the same thing recursively for the type of each argument of each function in

the set, if ever,

in the breadth-first way instead of the depth-first way because the depth is infinite.
This can be achieved in the following way: letX be the infinite set of matching

functions defined above, and



1. as a lazy list produce a subset ofX that includes programs with size 1, and try each;
2. as a lazy list produce a subset ofX that includes programs with size 2, and try each;
3. as a lazy list produce a subset ofX that includes programs with size 3, and try each;

... and so forth.

Although this may look complicated, it can concisely be written in modern functional
languages by using the monad for breadth-first search defined by Spivey[7].1

Here I mention an optimization employed to reduce redundancy in the search space.
If there is an expression that includes a subexpressionK E1 E2, the subexpression can
always be reduced to the shorter formE1, and thus such an expression should always
be tried beforehand, when trying shorter programs. The same thing applies toI E1.
However, if there is a term sharing things are different, i.e.,S E1 E2 E3 reduces to
E1 E3 (E2 E3), and ifE3 is a long expression this reduction may yield a longer expres-
sion. Thus, we obtain the following general optimization rule:always avoid reducible
terms unless the head function duplicates a parameter.

In the later presentation I write(→) a b instead ofa → b if the parameter should
not be given to this function when producing programs, or in other words, if supplying
the parameter makes the term reducible and the parameter is not shared. The prefixed
(→) has stronger fixity than the infixed→.

4 Component Library Design

One easy way of designing the component library is to useSK plusfix plus construc-
tors and case expressions (or destructors) for each data type. However, this naive way
has some tasks that unnecessarily enlarge the search space. This section discusses the
policy to design it to avoid unnecessary redundancy in the search space and at the same
time to cover large class of functions, based on the results of preliminary experiments.

4.1 Avoiding Absent Parameters

K :: ∀ a b. a → b → a enables absent parameters. On the other hand, if it is used in
the component library of the proposed algorithm without any specialization, it causes
the search space explode, because its return typea matches any requested type and its
argument requests typeb, which can match any expression, and thus the algorithm is
forced to produce all the expressions without any type constraint as the second argu-
ment ofK :: ∀ a b. a → b → a. Moreover, all the expressions produced in this way
are ignored without being used because they are passed as absent parameters, totally
wasting the complexity.

One approach to this problem is just to suppress theK E1 E2 pattern by defining
the type ofK as∀ a b. a → (→) b a and use the optimization written in Section 3.3.
What follows shows another approach that avoids usingK. This approach prevents

1 Applying Spivey’s monad (stream of finite lists) to my algorithm in a straightforward way
causes extreme heap use, because some results of computation remains in the memory for
later reuse. In order to avoid that by recomputation, in my implementation I used a function
taking an integer and returning a finite list as the monad instead.



simple programs from being filled up with many meaningless combinators, but requires
many destructors for each data type.

If a function without any absent parameter is definable fromS andK, it is provably
definable withoutK by introducing the compositor
B = λ f g x . f (g x ) :: ∀ a b c. (c → a) → (b → c) → b → a and the permu-
tatorC = λ f x y . f y x :: ∀ a b c. (b → c → a) → c → b → a as primitive
combinators and usingS, B, C, andI.

Note that withoutK more destructors have to be defined. For example, when the
type of natural numbersNat is defined with0 and successor functions, if one may use
K, only one destructor forNat is enough, that is,caseNat defined as follows:

caseNat :: ∀ a. a → (Nat → a) → Nat → a
caseNat x f 0 = x
caseNat x f (s n) = f n

By usingcaseNat the function that doubles the argument is defined ascaseNat 0 (B s s),
and the function that returns0 if the argument is0 and returns1 (= s 0) otherwise can
be defined ascaseNat 0 (K (s 0)). However, the latter cannot be defined withoutK.

If K may not be used, addingifZero defined as

ifZero :: ∀ a. a → a → Nat → a
ifZero x y 0 = x
ifZero x y (s n) = y

is enough. In general, defining for each argument (Nat , in the above case) of each
function argument (f :: Nat → a in the above case) the version using the argument
and that not using it should be enough. However, if there aren parameters this policy
requires2n destructors, which may be a large amount for some data types. In the exper-
iment in Section 5 I reduced the number by permittingK with less polymorphic type
for some arguments. This issue requires more future discussion, though.

4.2 Fixed Point Combinator and Termination

The fixed point combinatorfix is defined asfix f = letrec { x = f x } in x , and
has type∀a. (a → a) → a. It is used to implement general recursions. By applying
the identity combinatorI = λ x . x :: ∀ a. a → a to fix , we obtain an infinite loop
fix I :: ∀ a. a which matches any type, increasing the search space tremendously.

Again, one can use(→) optimization tofix to solve the above problem. However,
it is worth discussing whether we should usefix or not. Although a fixed point com-
binator makes typed lambda calculus Turing-complete, this means the program may
not terminate. Thus, if you want to usefix in a search-based programming automation,
you have to define timeout in the interpreter. On the other hand, there is a computer
language calledCharity which is designed always to terminate. Although it cannot im-
plement interpreters for usual programming languages, it is still interesting because it
has enough ability to implement total functions such as Ackermann’s function that are
not primitive recursions.

In the experiments in the next section I used paramorphism (e.g. [1]) for each data
type instead offix to obtain terminating programs.



4.3 Resulting Component Library

Based on the discussion so far, I coordinated the component library for the experiments
as follows:

— Primitive combinators:
S :: ∀ a b c. (b → c → a) → (b → c) → b → a
S = λ f g x . f x (g x )
B :: ∀ a b c. (c → a) → (b → c) → (→) b a
B = λ f g x . f (g x )
C :: ∀ a b c. (b → c → a) → c → (→) b a
C = λ f x y . f y x
I :: ∀ a. (→) a a
I = λ x . x

— KList is a version ofK specialized to ignore list parameters.
KList :: ∀ a b. a → (→) [b] a — [b] means list ofb’s.
KList = λ x y . x

— Natural number constructors:
zero :: Int
zero = 0
successor :: Int → Int
successor = λ x . x + 1

— Natural number destructors:
paraNat :: ∀ a. a → (Int → a → a) → Int → a
paraNat x f 0 = x
paraNat x f (n + 1) = f n (paraNat x f n)
cataNat :: ∀ a. a → (a → a) → (→) Int a
cataNat x f 0 = x
cataNat x f (n + 1) = f (cataNat x f n)
caseNat :: ∀ a. a → (Int → a) → (→) Int a
caseNat x f 0 = x
caseNat x f (n + 1) = f n
ifZero :: ∀ a. a → a → (→) Int a
ifZero x y 0 = x
ifZero x y (n + 1) = y
predecessor :: (→) Int Int
predecessor 0 = 0
predecessor (n + 1) = n

— List constructors:
nil :: [a]
nil = [] — empty list
cons :: a → [a] → [a]
cons = λ x y . (x : y) — appends an element to a list.

— List destructors:
paraList :: ∀ a b. a → (b → [b] → a → a) → [b] → a
paraList x f [] = x



paraList x f (a : m) = f a m (paraList x f m)
paraList ′ :: ∀ a b. a → ([b] → a → a) → [b] → a
paraList ′ x f [] = x
paraList ′ x f (a : m) = f m (paraList ′ x f m)
caseList :: ∀ a b. a → (b → [b] → a) → (→) [b] a
caseList x f [] = x
caseList x f (a : m) = f a m
caseList ′ :: ∀ a b. a → ([b] → a) → (→) [b] a
caseList ′ x f [] = x
caseList ′ x f (a : m) = f m
head :: ∀ a. (→) [a] a — CAR in lisp
head (a : m) = a
tail :: ∀ a. (→) [a] [a] — CDR in lisp
tail (a : m) = m

Note that the same component library is used for all the experiments.

5 Experiments

5.1 Task Description

This section presents results from experiments of composing the following functions:

– nth :: Int → [a] → a satisfying
nth 5 ”widjfgwi” == ′f ′ andnth 1 ”wddidjfgwi” == ′w ′,

– map :: (b → a) → [b] → [a] satisfying
f (λ c. c ==′ c′) ”stock” == [False, False, False, True, False] and
f (λ c. c ==′ e ′) ”peeped” == [False, True, True, False, True, False]

– length :: [a] → Int satisfyingf ”hageho” == 6 andf ”hoge” == 4

Correct answers for those tasks are:

nth = B (cataNat head (C B tail)) predecessor
map = B (paraList nil) (B (C (Klist cons)))
length = paraList ′ 0 (Klist successor)

In all the tasks the proposed method successfully produced the correct program.

5.2 Results

All the experiments were run on a Pentium4 2.00GHz machine. I used the Glasgow
Haskell Compiler ver. 6.2 on Linux 2.4.22, with the-O optimization flag.

Table 1 shows the computation time of the proposed method in seconds. Here I
provide the minimum and the maximum of three runs. Note that they do not and should
not differ in a great deal between runs, because the algorithm is deterministic.

Note that all the experiments finished within seconds. This fact suggests some utility
in everyday programming.

It is interesting that the number of type-consistent programs until the correct one
is found is within hundreds. Table 2 shows the number of possible programs matching
each requested type, ordered by the program size.



Table 1. Computation time (sec.) of the proposed method, and the number of type consistent
unsuccessful programs tried

nth map length
min/max of three runs (real) 4.43/4.52 1.59/1.62 0.026/0.044

(user) 4.29/4.37 1.57/1.58 0.010/0.030
# of programs tried until success 619 0 17

Table 2.Number of type-consistent programs for each size.

size 1 2 3 4 5 6 7 8
nth 0 0 2 2 40 113 1027 4626
map 0 0 0 0 0 0 2 7

length 0 1 1 18 29 415 1632 14126

5.3 Comparison with Genetic Programming Approach

PolyGP [9] is a genetic programming algorithm that generates type-consistent Haskell
programs in the Hindley-Milner type system. It is a pioneering work that for the first
time focused on the Hindley-Milner system to moderately limit the search space in
inductive programming automation.
Success rateUnlike my approach presented here, PolyGP is a genetic programming
algorithm, and thus it may be unable to find a correct program forever, depending on
the initial population. According to [8], 4 of 10 runs fornth and 3 of 10 runs formap
are successful. Also, all the successful cases ofnth found a correct program within
12000 programs, and those ofmap found one within 35000. On the other hand, my
program always succeeds.
Computation time Because the original code is not efficient, I applied some optimiza-
tion and ran it in the environment described at the beginning of Subsection 5.2.

The computation time of PolyGP formap task trying 35000 programs spanned from
31.5 sec to 33.7 sec when I tried 10 runs.
RequirementsPolyGP requires the user to design the fitness function to reflect how
good the program behaves. Fornth task this is designed by the difference between the
integer argument and the actual position of the returned character, and formap task
this is the difference in length and contents between the expected output list and the
actual list. Programming those fitness functions can sometimes require more labor than
programming the target functions such asnth andmap.

Also, experiments of PolyGP in [8] use different library for each task, which my
algorithm does not require.

One point we should remember is that using different component libraries between
different algorithms can make comparisons unfair, because, to consider an extreme case,
if the function that is searched for is included in the library it is easy to find it. On the
other hand, we should evaluate algorithms under useful conditions in order to obtain
informative results. In Section 4 I tried to show that the library is reasonably selected.



In addition, I used a common library throughout the experiments to show that it is
general, which condition is more pragmatic.

6 Conclusions

A system that generates a shortest type-consistent functional program that satisfies the
given property by breadth-first exhaustive search is presented and evaluated. Although
the tasks might be too easy for evaluation, I guess the system is still useful when, for
example, programming overnight and our mind does not work well, provided the com-
puter answers within seconds.

Also, this paper shows that with an appropriate component library the number of
type-consistent programs can be surprisingly small. It is interesting that under strongly-
typed environment there seems not to have existed brute-force approaches to inductive
programming automation in recent literature (and thus with recent CPU power), al-
though there exist heuristic approaches like genetic programming which may be overkill.
I do not think exhaustive search methods can universally be applied to synthesis of large
programs, but trying the simplest method before inventing heuristic ones and comparing
them might be one good research policy.
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