Systematic search for
functional programs

Susumu Katayama
University of Miyazaki

Exploiting strong typing

2

Exploiting strong typing

\% $
%

*

Exploiting strong typing

+ 9

[nductive synthesis of functional
programs

Inductive synthesis of functional programs (Inductive functional programming)
automatic generation of functional programs from examples/properties.

{(“dSI”,S)’ (“ak”,Z)} >

Oor

fs.t. fdsl” == 3 &&
f“ak” __

* Properties can be more flexible than examples.

The implemented system

Please watch the demo....

[nductive synthesis of functional
programs

Inductive synthesis of functional programs (Inductive functional programming):
automatic generation of functional programs from examples/properties.

- examples (I/O pair) ~ functional program

{(“dSI” ’3)’ (“ak” ,2)}

f “” :O

Oor
 properties (predicate) flcs)=1+Fs

fs.t. fdsl” == 3 &&
f«ak” __

* Properties can be more flexible than examples.

Human programmers usually: could be automated

W’ 10]) = [CVIEW Il == foSE L

= Outline

* Introduction
motivation, policy, & conventional approaches

* The implemented system
rough specification & detailed implementation

* Experiments
results on some easy problems

* Conclusions

Placement

» "Deductive”synthesis from complete spec.

» “Inductive”synthesis from incomplete spec.
* by generating & folding computational traces from examples

* search-based, or by trial and error

» Genetic Programming (GP)

» The proposed method

- related work(1):
=Synthesis via computational traces

» Step 1: Generate computational traces
* by constraints on examples (Summers 1977)
* by hand (a.k.a. programming by demonstration (PBD))

* by a universal planner (Schmid 2001)

. . . . by search

* by genetic programming (Schmid 2004)

» Step 2: Fold the traces into a recursive program
* by pattern matching

Drawback: unfolded traces are longer than programs
search space bloats much earlier
‘ (than direct search methods like GP)

- related work(2):
= Genetic programming (1/3)

assumption:

“useful programs consist of useful subexpressions”

Search by recombination of subexpressions

Return to th
population

/N

/N

New programs
(children)

Crossover

—

/N

/N

Pick up

Promising programs
(parents)

- related work(2):
=(Genetic programming (2/3)
GP applied to inductive algorithm synthesis

our interest:

synthesis of reusable (often typeful and recursive) algorithms
NB: typical use of GP: typeless CSP and function approx.

*» ADATE (Olsson 1995)

» monomorphic first-order type system
» requires a file with tens of lines written for each synthesis
» Interesting results reported, but not reproducible

» PolyGP (Yu 1998)
» polymorphic higher-order type system

» requires a file with tens of lines written for each synthesis
» exhaustive search is faster (Katayama 2004)

-related work(2):
= (Genetic programming (3/3)

Genetic programming research

independent 1deas

.. Implementation
heuristics b

» different scientists use different settings
“100 researchers, 100 genetic algorithms

* N0 comparison with non-heuristic approaches
[t is often unclear if/which heuristic worked.

- Motivation

1) First we should investigate systematic search.
* How can we optimize its implementation?

> How efficient is it? Is it slower/faster than GP?
* etc.
2) Heuristics (incl GP) should be added based

on the above knowledge.
» petter modularity
» steady improvement

kngwledge on
systematic search

- Policy (1)

* exploration of exhaustive breadth-first search
construct a basis on which to build heuristic approaches like GP,
* control the exponential bloat in the search space.
to be more concrete,

» Limit to (grammatically & type)-correct expressions (of course!)
* Avoid multiple-count of equivalent expressions
using known reducible patterns and (maybe) transformation rules
e.g. do not try both foldr foo bah [] and bah
do not try both (¥x -> foo x) bah and foo bah

Optimize the implementation - - - memoization, etc.

- Policy (2)

* ease of use
at least it should be easier than writing the programs directly

* just writing a boolean function as predicate
Invokes the search

* use general-purposed component combinator set,
not tailor-made function set for each synthesis

= 1he implemented system

* Introduction
* The implemented system
rough specification & detailed implementation

* Experiments

* Conclusions

Specification

component library file

keyboard

® property,
e.g., \f. f “slkd”==
e type (optional)
e.g. [a] »Int

* The type is inferred when omitted.

synthesizer

program output l

(\a -> list paraazero(\bcd->incd))

[nternal structure

- | | component library file
eyboar | |
type Program pe
| generator | Slgnatures

bindings

A

f{lpgm
program output
(\a ->list paraazero(\bcd->incd))

- Language

The language: Haskell subset

» Hindley-Milner type system
without functions in containers, such as [a->b], (a,b->c¢),
...(for efficiency reasons)

» Frontend ... usual lambda calculus
Backend ... de Bruijn lambda calculus

Katayama (2004) used typed SIBC combinators, but
* Such combinatory expressions are redundant;
» Search tree branches a lot in the shallow stages;
* The complexity of involved types bloats.

- Implementation
Story:

» Preparation
* Monad for breadth-first search
* Monad transformer for type inference

» Arity known cases where functions never return type vars

» Arity unknown cases

where there can be a function of the form “forall a. Foo » Bar » ... » a"

» Memoization & devices for making keys hit often

= Monad for breadth-first search

» Spivey (2000)"'s monad:
Matrix a = Stream (Bag a) (actually defined as [[a]])
1** bag for depth 0, 2™ for depth 1, ... of the search tree

d
b/('l\d abstract the depth info.
s g/\h I :::} [[a].[b,c.d].[e.,f,g,h],...]

X for combinations and + for alternatives (defined as usual)
Eases implementation a lot but gobbles the heap a lot

*» Recomputing variant:
Recomp a = [nt — Bag a suppresses heap consumption
k» depth

= Monad trans. for type inference

» Typical implementation:
TI a = Subst _Int _Maybe (a, Subst, Int)

states
Subst:

Int: fresh variable ID

1}

current’ substitution

» Monad transformer considering alternative states:

1T Recomp a
where TI m a = Subst = Int — m (a, Subst, Int)

=Naive implementation (arity known)

data Expression = Lambda Expression - - lambda abstraction
| X Int - - de Bruijn variable
| Expression :$ Expression - - function application

unikExprs :: [(Expression, Type)] -> [Type] -> Type -> TI Recomp Expression
uniExprs prims avails (t0:->t1) = do result <- uniExprs prims (tO:avails) t1
return (Lambda result)
unikExprs prims avails reqret
= do (expr,typ) <- msum $ map return $ (zip (map X [0..]) avails ++ prims)
typ' <- freshVariablesForForalls typ
setMGU reqret (returnTypeOf typ') -- setMGU :: Type -> Type -> Tl m ()
spine avails typ' expr
where spine :: Type -> Expression -> TI Recomp Expression
spine (t:->ts) fun -- (:->) represents function type constructor
= lift delay (do subst <- getSubst
arg <- uniExprs prims (map (apply subst) avails) (apply subst t)
spine ts (fun :$ arg))
spine _avs _t fun = return fun

Xsimplified to improve presentation rather than the efficiency
e.g. Expressions with the same type are actually put together to [Expression]

- Primitives returning type variables
(arity unknown)

Va T,— T,—a can be specialized
IL'->17,>RT,">T,">(A-R),T,"">1," " -5(A > A—>R),..
LT, T, T, L. are specialization of 77 and7;)
== Arity undecidable

» solution 1: generate all alternatives
(al »R) case mplus (al »b ->R) case mplus (al »b ->c ->R...
problem: create lots of equivalent programs

» solution 2(current): introduce new constructor

representing direct product of type variables:
b, (b,c), (b,c,d), ...

Memoization

The same simple type is requested many times

S

Memoize Type — [Type] — TI Recomp [Expression]
(or* Type — [Type] — Int — [([Expression], Subst,int)])

variables

Queries often hit. This list becomes long.

% Exactly, 1ype—[Type] —Subst —Int — Int — [(Expression, Subst, Int)]
but you could apply the substitution and rename the type variables to normalize its numbering.

Reorganizing (idea)

Point:
Only the set of available types matters
X list

e.g. for x,, x; :: Char
.. Xy... X,... 1S type correcte> Xy X 1S type correct

<...X[... X,... 1S type correct
... X,... X,... 1s type correct

available={x,, x,: :Char| case and
available={x,::Char| case can share the same memo entry”
* post processing required

Reorganizing (implementation)

Available variables: X,- - Char, x,::Bool, x, :: Char

/ preprocess (sort & nub)

v v
Memo entry: Xx,.:Char, x,::Bool

Retriever map: {O — [0,2] , 1—>[1]}
Memo function wrapper

1. sort the argument types and assign one variable name for one type

2. invoke memo function

3. generate all cases by replacing variables (using retriever map).

- Avoiding reducible expressions

» Optimization rules suggest redundancy in
the program space.

» Because expressions with the same type
are put together, rules that cannot detected
from type info. might not help a lot.

* Current rule to identify reducible points:
the strict argument of consumer functions
(ike case, cata, para) must not be constant
(i.e. must include a free variable)
(Note: quite limited)

Experiments

* Introduction
* The implemented system
* Experiments

results on some easy problems
* Conclusions

Problems

Problems from the previous work (Katayama 2004) for comparison
® nth : Int-»[a] > a
nth 5 “widifgwi” =="'f' &&
nth 1 “wddidjfewi” == 'w'
* map :: (b »a) »[b] »[a]
map (=='c') “stock” == [False,False,False TrueFalse] &&
map (=='e') “peeped” == [False,True, True False, True False]
* length :: [a] »=Int
length “hageho” == 6 && length “hoge” ==

The component combinators

Previous work New algorithm
*S, K |,B,and C
* constructors * constructors

* curried paramorphisms # curried paramorphisms
» head, tail and pred * head, tail and pred

Results

Evaluation of proposed method:

Computation time (sec.) nth map length
Old algorithm (real) 5.3 2.2 0.03
(user) 5.1 2.2 002
)
)

New algorithm (real) 0.8 1.9 0.03
(user) 0.6 1.2 0.02

e Improved for the problems used in the previous work.
e Greater programs (sized more than 12) still require more than a minute
or cannot be synthesized.

- Discussion towards a usable system:
= # of equivalent programs

The results so far are happened-to-work toy examples!

Synthesis of take::Int->[a]->[a] requires tens of seconds.
... How much it might potentially be optimized?

== Do (very) light-weighted random testing

file ... 251940 lines [OTS OF ROOM FOR
sort file | uniq ... 514 lines IMPROVEMENT

- Conclusions

* Introduction
* The implemented system
* Experiments

* Conclusions

Summary

» Investigated breadth-first exhaustive search for
de Bruijn expressions

* easy problems sized around ten can be solved
within seconds

» Still room for efficiency improvement

- Future work

» Controlling exponential bloat
Solution: remove more equivalent programs
or lower the priorities of seem-to-be-equivalent programs

» transformation rules
* use lightweighted random testing for small expressions

* Type classes: dealing with contexts
» contexts “generic in nature” e.g. Eq, Show, Read, etc.
... Just 1gnore.
» other “ad hoc” classes like Num ... needs implementation.
» Heuristics:
e.g. to prioritize subexpressions of expressions
that returned the correct outputs to some of the inputs

