
Systematic search for
functional programs

Susumu Katayama
University of Miyazaki

Exploiting strong typing

Exploiting strong typing

Exploiting strong typing

Inductive synthesis of functional
programs

Inductive synthesis of functional programs (Inductive functional programming):
automatic generation of functional programs from examples/properties..

{(“dsl”,3), (“ak”,2)}

f s.t. f “dsl” == 3 &&
f “ak” == 2

examples (I/O pair)

properties (predicate) or f “” = 0
f (c:s) = 1 + f s

* Properties can be more flexible than examples.

functional program

The implemented system

Please watch the demo....

could be automated

Inductive synthesis of functional
programs

Inductive synthesis of functional programs (Inductive functional programming):
automatic generation of functional programs from examples/properties..

{(“dsl”,3), (“ak”,2)}

f s.t. f “dsl” == 3 &&
f “ak” == 2

examples (I/O pair)

properties (predicate) or f “” = 0
f (c:s) = 1 + f s

* Properties can be more flexible than examples.

functional program

Human programmers usually:

Write a function review it test it

You should still do that!

Outline
Introduction
motivation, policy, & conventional approaches

The implemented system
rough specification & detailed implementation

Experiments
results on some easy problems

Conclusions

Placement

“Deductive”synthesis from complete spec.

“Inductive”synthesis from incomplete spec.

by generating & folding computational traces from examples

search-based, or by trial and error

Genetic Programming (GP)

The proposed method

Drawback: unfolded traces are longer than programs
 search space bloats much earlier

 (than direct search methods like GP)

related work(1):
Synthesis via computational traces

Step 1: Generate computational traces
by constraints on examples (Summers 1977)

by hand (a.k.a. programming by demonstration (PBD))

by a universal planner (Schmid 2001)

by genetic programming (Schmid 2004)

Step 2: Fold the traces into a recursive program
by pattern matching

by search

related work(2):
Genetic programming (1/3)

 assumption:

 “useful programs consist of useful subexpressions”

Search by recombination of subexpressions

Population
(set of programs)

Promising programs
(parents)

Pick up

Crossover

New programs
(children)

Return to the
population

related work(2):
Genetic programming (2/3)

GP applied to inductive algorithm synthesis
our interest:
synthesis of reusable (often typeful and recursive) algorithms

NB: typical use of GP: typeless CSP and function approx.

ADATE (Olsson 1995)
monomorphic first-order type system

requires a file with tens of lines written for each synthesis

interesting results reported, but not reproducible

PolyGP (Yu 1998)
polymorphic higher-order type system

requires a file with tens of lines written for each synthesis

exhaustive search is faster (Katayama 2004)

related work(2):
Genetic programming (3/3)

Genetic programming research

different scientists use different settings
“100 researchers, 100 genetic algorithms

no comparison with non-heuristic approaches
It is often unclear if/which heuristic worked.

independent ideas
heuristics

Implementation

heuristics

Motivation
1) First we should investigate systematic search.

How can we optimize its implementation?
How efficient is it? Is it slower/faster than GP?
etc.

2) Heuristics (incl' GP) should be added based
on the above knowledge.
better modularity
steady improvement

knowledge on
systematic search

Policy (1)
exploration of exhaustive breadth-first search

construct a basis on which to build heuristic approaches like GP,

control the exponential bloat in the search space.

to be more concrete,

Limit to (grammatically & type)-correct expressions (of course!)

Avoid multiple-count of equivalent expressions

 using known reducible patterns and (maybe) transformation rules

 e.g. do not try both foldr foo bah [] and bah

 do not try both (\x -> foo x) bah and foo bah

Optimize the implementation --- memoization, etc.

Policy (2)
ease of use
at least it should be easier than writing the programs directly

just writing a boolean function as predicate
invokes the search

use general-purposed component combinator set,
not tailor-made function set for each synthesis

The implemented system
Introduction
motivation, policy, & conventional approaches

The implemented system
rough specification & detailed implementation

Experiments
compared with polymorphic GP

Conclusions

Specification

keyboard

● property,
 e.g., \f. f “slkd”==4
● type (optional)
 e.g. [a] Int

component library file

* The type is inferred when omitted.

(\ a -> list_para a zero (\ b c d -> inc d))

program output

 zero :: Int
 zero = 0
 inc :: Int -> Int
 inc = \ x -> x+1
 nat_para :: Int -> a->(Int->a->a)->a
 nat_para = \ i x f ->

 if i==0 then x else
 f (i-1) (nat_para (i-1) x f)

...
synthesizer

Internal structure
keyboard

component library file

Program
generator

type type
signatures

stream of
programs

(\ a -> list_para a zero (\ b c d -> inc d))
program output

successful program

Interpreter

property to satisfy
(boolean function) bindings

Language
The language: Haskell subset

Hindley-Milner type system
 without functions in containers, such as [a->b], (a,b->c),

...(for efficiency reasons)
Frontend ... usual lambda calculus

 Backend ... de Bruijn lambda calculus

Katayama (2004) used typed SIBC combinators, but
Such combinatory expressions are redundant;
Search tree branches a lot in the shallow stages;
The complexity of involved types bloats.

Implementation
Story:

Preparation

Monad for breadth-first search

Monad transformer for type inference

Arity known cases where functions never return type vars

Arity unknown cases
where there can be a function of the form “forall a. Foo > Bar > ... > a”

Memoization & devices for making keys hit often

Monad for breadth-first search
Spivey (2000)'s monad:
Matrix a = Stream (Bag a) (actually defined as [[a]])

1st bag for depth 0, 2nd for depth 1, ... of the search tree

 for combinations and for alternatives (defined as usual)

Eases implementation a lot but gobbles the heap a lot
Recomputing variant:
Recomp a = Int Bag a suppresses heap consumption

×

depth

a

b c d

e f g h

abstract the depth info.

[[a],[b,c,d],[e,f,g,h],...]

Monad trans. for type inference

Typical implementation:
TI a = Subst Int Maybe (a, Subst, Int)

Subst: “current” substitution

Int: fresh variable ID

Monad transformer considering alternative states:
TI Recomp a

where TI m a = Subst Int m (a, Subst, Int)

 states

Na ve implementation ï (arity known)

*simplified to improve presentation rather than the efficiency
e.g. Expressions with the same type are actually put together to [Expression]

data Expression = Lambda Expression -- lambda abstraction
| X Int -- de Bruijn variable
| Expression :$ Expression -- function application

uniExprs :: [(Expression,Type)] -> [Type] -> Type -> TI Recomp Expression
uniExprs prims avails (t0:->t1) = do result <- uniExprs prims (t0:avails) t1

 return (Lambda result)
uniExprs prims avails reqret

 = do (expr,typ) <- msum $ map return $ (zip (map X [0..]) avails ++ prims)
 typ' <- freshVariablesForForalls typ
 setMGU reqret (returnTypeOf typ') -- setMGU :: Type -> Type -> TI m ()
 spine avails typ' expr

where spine :: Type -> Expression -> TI Recomp Expression
 spine (t:->ts) fun -- (:->) represents function type constructor

= lift delay (do subst <- getSubst
 arg <- uniExprs prims (map (apply subst) avails) (apply subst t)
 spine ts (fun :$ arg))

 spine _avs _t fun = return fun

Primitives returning type variables
(arity unknown)

 can be specialized

 Arity undecidable
solution 1: generate all alternatives

 problem: create lots of equivalent programs

solution 2(current): introduce new constructor
representing direct product of type variables:
b, (b,c), (b,c,d), ...

∀ a.T1 T2a

T1 ' T2 'R ,T1' 'T2 ''A1R ,T1' ''T2 '' 'A1 A2R ,...

T1 ', T2 ', T1' ', T2' ', T1' '' , T2'' ', ...(are specialization of and)T1 T2

(a R) case `mplus` (a b -> R) case `mplus` (a b -> c -> R...

Memoization

The same simple type is requested many times

Memoize
(or*)

Type [Type] TI Recomp [Expression]
Type [Type] Int [([Expression], Subst,Int)]

request type Types of available
variables

depth

Queries often hit. This list becomes long.

* Exactly,
 but you could apply the substitution and rename the type variables to normalize its numbering.

Type[Type]Subst Int Int [(Expression, Subst, Int)]

Reorganizing (idea)
Point:
 Only the set of available types matters

× list

x0, x1 ::Char
... x0 ... x0...

e.g. for
is type correct⇔ ... x0... x 1... is type correct

⇔ ... x1... x 0... is type correct
⇔ ... x1... x 1... is type correct

 case and
 case can share the same memo entry*!

 * post processing required

available={x 0, x 1: :Char}
available={x 0: :Char}

Reorganizing (implementation)

x0: :Char, x 1::Bool , x 2::Char

x0: :Char , x 1::Bool

preprocess (sort & nub)

Memo entry:

Retriever map: {0[0,2] ,1[1]}

Available variables:

1. sort the argument types and assign one variable name for one type

2. invoke memo function

3. generate all cases by replacing variables (using retriever map).

Memo function wrapper

Avoiding reducible expressions

Optimization rules suggest redundancy in
the program space.
Because expressions with the same type
are put together, rules that cannot detected
from type info. might not help a lot.
Current rule to identify reducible points:
the strict argument of consumer functions
(like case, cata, para) must not be constant
(i.e. must include a free variable)

(Note: quite limited)

Experiments
Introduction
motivation, policy, & conventional approaches

The implemented system
rough specification & detailed implementation

Experiments
results on some easy problems

Conclusions

Problems

Problems from the previous work (Katayama 2004) for comparison

nth :: Int [a] a

nth 5 “widjfgwi” == 'f' &&

nth 1 “wddidjfgwi” == 'w'

map :: (b a) [b] [a]

map (=='c') “stock” == [False,False,False,True,False] &&

map (=='e') “peeped” == [False,True,True,False,True,False]

length :: [a] Int

length “hageho” == 6 && length “hoge” == 4

The component combinators

S, K, I, B, and C

constructors

curried paramorphisms

head, tail and pred

Previous work

constructors

curried paramorphisms

head, tail and pred

New algorithm

Results

Computation time (sec.) nth map length
Old algorithm (real) 5.3 2.2 0.03

(user) 5.1 2.2 0.02
New algorithm (real) 0.8 1.9 0.03

(user) 0.6 1.2 0.02

Evaluation of proposed method:

● Improved for the problems used in the previous work.
● Greater programs (sized more than 12) still require more than a minute,
 or cannot be synthesized.

Discussion towards a usable system:
of equivalent programs

The results so far are happened-to-work toy examples!

Synthesis of take::Int->[a]->[a] requires tens of seconds.
.... How much it might potentially be optimized?

 Experiment to give some estimate:
 for each f :: Int -> [a] -> [a] in the generated expressions,

● compute (f 2 "12332", f 0 "56789", f 2 "k", f 0 "")
 > file

● compare wc file and sort file | uniq | wc

Do (very) light-weighted random testing

file ... 251940 lines
sort file | uniq ... 514 lines

Lots of room for
 improvement

Conclusions
Introduction
motivation, policy, & conventional approaches

The implemented system
rough specification & detailed implementation

Experiments
results on some easy problems

Conclusions

Summary

investigated breadth-first exhaustive search for
de Bruijn expressions
easy problems sized around ten can be solved
within seconds
Still room for efficiency improvement

Future work
Controlling exponential bloat
Solution: remove more equivalent programs

or lower the priorities of seem-to-be-equivalent programs

transformation rules
use lightweighted random testing for small expressions

Type classes: dealing with contexts
contexts “generic in nature” e.g. Eq, Show, Read, etc.
... just ignore.
other “ad hoc” classes like Num ... needs implementation.

Heuristics:
e.g. to prioritize subexpressions of expressions
that returned the correct outputs to some of the inputs

