
Description of the agent

Susumu Katayama

August 14, 2017

1 The principle

The challenge can be formalized as the problem of adap-
tively synthesizing the agent’s behavior at each time step
as a function from the interaction history to an action.
Our main idea is to synthesize the function as a pro-
gram which uses a finite set of library functions (includ-
ing nullary values) or skills. Incremental learning can be
achieved by biasing the library to fitter, more useful func-
tions (or functions appearing in useful compound func-
tions more frequently). Biasing means searching promis-
ing regions deeper, by using more complex compound li-
brary functions. We call the functions in the initial library
instincts, and we call the useful set of functions that have
been synthesized as combinations of instincts and regis-
tered to the library learned skills.

1.1 The learning cycle of our agent

Figure 1 roughly shows the learning cycle of our agent.
The learner tries to detect task instance switch, and at

this timing, it updates the library (or set of skills). In
other words, one cycle corresponds to one task instance.

One cycle has two phases:

1. the observation phase during which the agent only
randomly pretends to communicate with the environ-
ment and collect the history information, and

2. the main phase during which it truly communicates
intelligently.

After the observation phase, lazy stream of all programs
that can be composed from the set of skills and are con-
sistent with the history so far is generated. This part is
implemented using the MagicHaskeller library. Each pro-
gram has an associative memory (that maps input strings
to feedbacks) and conditional reflex (that maps inputs to
outputs) generated from the history.

In the main phase, the agent applies programs in the
stream to the current input character and history, and
remove programs that are apparently inconsistent with the
input and the history. Programs should not be removed
if looking up their associative memory fails, because they
may become consistent when the associative memory is
substantiated later.

Then, the algorithm finds the leftmost consistent pro-
gram and its return value, and it is used as the output

character to the environment. In this algorithm, the left-
most program is the one with the highest priority. At the
beginning, it is the shortest valid program. When a pro-
gram’s return value caused to receive positive reward, it
is moved to the leftmost position.

Then, the history is updated, the algorithm repeats the
main phase from the beginning, unless it detects a task
instance switch. How to detect a task instance switch is
discussed in the next section.

Then, the set of skills is updated, by adding subexpres-
sions of the last rewarded synthesized program.

1.2 Detecting task instance switches

Incremental learning is achieved by updating the library,
or the set of skill functions. It is updated when the algo-
rithm detects a task instance switch.

We think that correctly detecting them is a difficult
task, if ever possible, even for humans without prior knowl-
edge or non-verbal signs, though overlooking switches can
cause catastrophic results. Thus, we decided not to spend
lots of time for this, and assume a switch when the current
behavior that has been doing well suddenly start being
punished or failing to parse the history.

1.3 Choice of the set of instincts

Practically, an important question is how the set of in-
stincts looks. There is a trade-off between generality of
efficiency of the learner: if all the tasks are known in ad-
vance, the agent can learn in the least number of steps by
using a set of complex compound functions which are spe-
cialized to the task; on the other hand, the agent can deal
with more different tasks by increasing the percentage of
primitive instinct functions.

On applying the quantitative prize, the learner must
solve more tasks in less time within 24 hours. Thus, we
made a guess on the extent of the required generality, and
designed an “animal-like” (rather than human-like) set of
instincts which includes compound functions. Apart from
this choice of the set of instincts (which has been solved
by evolution in the case of animals in millions of years),
we believe that our algorithm is designed in a very general
framework and can be applied to design of general AI.

1

A How to compile and run the
agent

A.1 Compiling the agent

We assume Ubuntu 14.04 or 16.04. Install Haskell Plat-
form and 0MQ-related packages by

> sudo apt-get update

> sudo apt-get install haskell-platform \

libghc-zeromq4-haskell

Now create and move into a new directory. Then, typing

> unzip source.zip

> cabal update

> cabal install

will install executable ZMQAgent into ./dist/build/

ZMQAgent/ and ~/.cabal/bin/.
The default build of ZMQAgent accesses tcp://

localhost:5556 and does not log the history.

> cabal install --flags="DOCKER"

changes the target address to 172.18.0.1.

> cabal install --flags="MONITOR"

makes the executable which writes out input-output-
reward history to the standard output.

If you prefer to choose another target address, e.g.
1.2.3.4, execute

> ghc ZMQMain.hs -package zeromq4-haskell \

--make -O2 -DADDRESS=1.2.3.4

then, ./ZMQMain will be generated as the executable.

A.2 Running the agent

ZMQAgent (and ZMQMain) can be run without arguments,
e.g.,

> ./ZMQAgent

or from within the Round1 directory

> python src/run.py \

src/tasks_config.challenge.json \

-l learners.base.RemoteLearner \

--learner-cmd "path/to/ZMQAgent"

If command line arguments are provided, the first one is
used as the port number and the rest is discarded.

skills <- instincts

forever {

history <- [] // empty list

alphabet <- []

for a while {

// just observe without synthesizing anything

if input==’ ’ then output random char

else output ’ ’

history <- history ++ [(input,output,reward)]

alphabet <- alphabet ++ [input]

}

progs <- all the valid programs composed of

skills and alphabet,

from the shortest increasing the length

do {

progs <-

[prog | prog <- progs,

prog(input) is not an error

(i.e. prog is consistent)

or assoc memory lookup failed]

candidates <- [(prog, prog(input)) |

prog <- progs,

prog(input) is not an error]

(candidate, output) <-

initial element of candidate

if reward>0

then progs <-

[candidate] ++ progs without candidate

history <- history ++ [(input,output,reward)]

} until a task instance switch is detected

// Increment the skills!

skills <-

skills ++ subexpressions(synthesized_program)

}

Figure 1: A sketch of the learning cycle of our agent. In
this pseudocode, ++ is the list-concatenation operator, and
[. | .] denotes list comprehension, that is the list
counterpart of set comprehension.

2

